200 research outputs found

    Computing Optimal Coverability Costs in Priced Timed Petri Nets

    Get PDF
    We consider timed Petri nets, i.e., unbounded Petri nets where each token carries a real-valued clock. Transition arcs are labeled with time intervals, which specify constraints on the ages of tokens. Our cost model assigns token storage costs per time unit to places, and firing costs to transitions. We study the cost to reach a given control-state. In general, a cost-optimal run may not exist. However, we show that the infimum of the costs is computable.Comment: 26 pages. Contribution to LICS 201

    Well Structured Transition Systems with History

    Get PDF
    We propose a formal model of concurrent systems in which the history of a computation is explicitly represented as a collection of events that provide a view of a sequence of configurations. In our model events generated by transitions become part of the system configurations leading to operational semantics with historical data. This model allows us to formalize what is usually done in symbolic verification algorithms. Indeed, search algorithms often use meta-information, e.g., names of fired transitions, selected processes, etc., to reconstruct (error) traces from symbolic state exploration. The other interesting point of the proposed model is related to a possible new application of the theory of well-structured transition systems (wsts). In our setting wsts theory can be applied to formally extend the class of properties that can be verified using coverability to take into consideration (ordered and unordered) historical data. This can be done by using different types of representation of collections of events and by combining them with wsts by using closure properties of well-quasi orderings.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Adding Time to Pushdown Automata

    Full text link
    In this tutorial, we illustrate through examples how we can combine two classical models, namely those of pushdown automata (PDA) and timed automata, in order to obtain timed pushdown automata (TPDA). Furthermore, we describe how the reachability problem for TPDAs can be reduced to the reachability problem for PDAs.Comment: In Proceedings QFM 2012, arXiv:1212.345

    Sampled Semantics of Timed Automata

    Full text link
    Sampled semantics of timed automata is a finite approximation of their dense time behavior. While the former is closer to the actual software or hardware systems with a fixed granularity of time, the abstract character of the latter makes it appealing for system modeling and verification. We study one aspect of the relation between these two semantics, namely checking whether the system exhibits some qualitative (untimed) behaviors in the dense time which cannot be reproduced by any implementation with a fixed sampling rate. More formally, the \emph{sampling problem} is to decide whether there is a sampling rate such that all qualitative behaviors (the untimed language) accepted by a given timed automaton in dense time semantics can be also accepted in sampled semantics. We show that this problem is decidable

    Decisive Markov Chains

    Get PDF
    We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In particular, this holds for probabilistic lossy channel systems (PLCS). Furthermore, all globally coarse Markov chains are decisive. This class includes probabilistic vector addition systems (PVASS) and probabilistic noisy Turing machines (PNTM). We consider both safety and liveness problems for decisive Markov chains, i.e., the probabilities that a given set of states F is eventually reached or reached infinitely often, respectively. 1. We express the qualitative problems in abstract terms for decisive Markov chains, and show an almost complete picture of its decidability for PLCS, PVASS and PNTM. 2. We also show that the path enumeration algorithm of Iyer and Narasimha terminates for decisive Markov chains and can thus be used to solve the approximate quantitative safety problem. A modified variant of this algorithm solves the approximate quantitative liveness problem. 3. Finally, we show that the exact probability of (repeatedly) reaching F cannot be effectively expressed (in a uniform way) in Tarski-algebra for either PLCS, PVASS or (P)NTM.Comment: 32 pages, 0 figure

    Zenoness for Timed Pushdown Automata

    Full text link
    Timed pushdown automata are pushdown automata extended with a finite set of real-valued clocks. Additionaly, each symbol in the stack is equipped with a value representing its age. The enabledness of a transition may depend on the values of the clocks and the age of the topmost symbol. Therefore, dense-timed pushdown automata subsume both pushdown automata and timed automata. We have previously shown that the reachability problem for this model is decidable. In this paper, we study the zenoness problem and show that it is EXPTIME-complete.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Canonized Rewriting and Ground AC Completion Modulo Shostak Theories : Design and Implementation

    Get PDF
    AC-completion efficiently handles equality modulo associative and commutative function symbols. When the input is ground, the procedure terminates and provides a decision algorithm for the word problem. In this paper, we present a modular extension of ground AC-completion for deciding formulas in the combination of the theory of equality with user-defined AC symbols, uninterpreted symbols and an arbitrary signature disjoint Shostak theory X. Our algorithm, called AC(X), is obtained by augmenting in a modular way ground AC-completion with the canonizer and solver present for the theory X. This integration rests on canonized rewriting, a new relation reminiscent to normalized rewriting, which integrates canonizers in rewriting steps. AC(X) is proved sound, complete and terminating, and is implemented to extend the core of the Alt-Ergo theorem prover.Comment: 30 pages, full version of the paper TACAS'11 paper "Canonized Rewriting and Ground AC-Completion Modulo Shostak Theories" accepted for publication by LMCS (Logical Methods in Computer Science

    Dense-Timed Petri Nets: Checking Zenoness, Token liveness and Boundedness

    Get PDF
    We consider Dense-Timed Petri Nets (TPN), an extension of Petri nets in which each token is equipped with a real-valued clock and where the semantics is lazy (i.e., enabled transitions need not fire; time can pass and disable transitions). We consider the following verification problems for TPNs. (i) Zenoness: whether there exists a zeno-computation from a given marking, i.e., an infinite computation which takes only a finite amount of time. We show decidability of zenoness for TPNs, thus solving an open problem from [Escrig et al.]. Furthermore, the related question if there exist arbitrarily fast computations from a given marking is also decidable. On the other hand, universal zenoness, i.e., the question if all infinite computations from a given marking are zeno, is undecidable. (ii) Token liveness: whether a token is alive in a marking, i.e., whether there is a computation from the marking which eventually consumes the token. We show decidability of the problem by reducing it to the coverability problem, which is decidable for TPNs. (iii) Boundedness: whether the size of the reachable markings is bounded. We consider two versions of the problem; namely semantic boundedness where only live tokens are taken into consideration in the markings, and syntactic boundedness where also dead tokens are considered. We show undecidability of semantic boundedness, while we prove that syntactic boundedness is decidable through an extension of the Karp-Miller algorithm.Comment: 61 pages, 18 figure
    corecore